Physics 137B: The Structure of the Proton

- Studing the Proton Structure
- Electromagnetic Form Factor
- ullet Elastice ep scattering
- Deep Inelastic Scattering

The Proton is Not a Point-like Particle

- Quark model says p consists of 3 quarks (but are they real?)
- Gyromagnetic moment $g_p=5.586$ is far from the Dirac value of 2 that holds for pointlike spin- $\frac{1}{2}$ particles
- \bullet Size of nucleus consistent with nucleons of size $\sim 0.8~\text{fm}$

To study structure of the proton, will use scattering techniques Similar idea to Rutherford's initial discover of the nucleus

Scattering of Pointlike Particles

 Rutherford Scattering (spinless electron scattering from a static point charge) in lab frame:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E^2 \sin^4(\frac{1}{2}\theta)}$$

where E is the enrgy of the incident electron and θ is the scattering angle in the lab frame

 Mott Scattering: Taking into account statistics of identical spinless particles

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \cos^2(\frac{1}{2}\theta)}{4E^2 \sin^4(\frac{1}{2}\theta)}$$

- Elastic Scattering of a spin- $\frac{1}{2}$ electron from a pointlike spin- $\frac{1}{2}$ particle of mass M:
 - Scattering of electron from static charge changes angle but not energy
 - For target of finite mass M, final electron energy is

$$E' = \frac{E}{1 + \frac{2E}{M}\sin^2(\frac{1}{2}\theta)}$$

and the four-momentum transfer is

$$q^2 = -4EE'\sin^2(\frac{1}{2}\theta)$$

The elastic scattering cross section is:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \cos^2(\frac{1}{2}\theta)}{4E^2 \sin^4(\frac{1}{2}\theta)} \frac{E'}{E} \left[1 - \frac{q^2}{2M^2} \tan^2(\frac{1}{2}\theta) \right]$$

What Happens if the Target Particles Have Finite Size?

- Suppose the charge distribution is $\rho(r)$ normalized so that $\int \rho(r)d^3r = 1$
- The scattering amplitude is modified by a "Form Factor"

$$F(q^2) = \int d^3 r e^{i\vec{q}\cdot\vec{r}} \rho(r)$$

So that the cross section is modified by a factor of $|F(q^2)|^2$

- Note: As $q^2 \rightarrow 0$, $F(q^2) \rightarrow 1$
- We therefore can Taylor expand

$$F(q^2) = \int d^3r \left(1 + i\vec{q} \cdot \vec{r} - \frac{1}{2} (\vec{q} \cdot \vec{r})^2 + \dots \right) \rho(r)$$

• The first $\vec{q} \cdot \vec{r}$ term vanishes when we integrate

$$F(q^2) = 1 - \frac{1}{2} \int r^2 dr d \cos \theta d\phi \rho(r) (qr)^2 \cos^2 \theta$$

$$= \frac{2\pi}{2} \int dr d \cos \theta q^2 r^4 \cos^2 \theta$$

$$= 1 - \frac{\langle r^2 \rangle}{4} q^2 \int \cos^2 \theta d \cos \theta$$

$$= 1 - \frac{\langle r^2 \rangle}{4} q^2 \left[\frac{\cos^3 \theta}{3} \right]_{-1}^{1}$$

$$= 1 - \frac{\langle r^2 \rangle}{6} q^2$$

This F is called the "form factor"

• Thus, if we plot $\frac{d\sigma}{d\Omega}/\frac{d\sigma}{d\Omega}_{pointlike}$ vs $\tan^2\frac{1}{2}\theta$ or vs q^2 we can measure the size of the proton

$$< r^2>^{rac{1}{2}}=0.74\pm0.24 imes10^{13}~{
m cm}\sim0.7~{
m fm}$$
 (McAllister and Hofstadter, 1956)

See the next two pages for relevant plots

Hoffstader and McAllister's Experimental Setup

Fig. 2. Arrangement of parts in experiments on electron scattering from a gas target.

Fig. 1. Basic design of the gas chamber.

Hoffstader and McAllister's Results

Fig. 5. Curve (a) shows the theoretical Mott curve for a spinless point proton. Curve (b) shows the theoretical curve for a point proton with the Dirac magnetic moment, curve (c) the theoretical curve for a point proton having the anomalous contribution in addition to the Dirac value of magnetic moment. The theoretical curves (b) and (c) are due to Rosenbluth.³ The experimental curve falls between curves (b) and (c). This deviation from the theoretical curves represents the effect of a form factor for the proton and indicates structure within the proton, or alternatively, a breakdown of the Coulomb law. The best fit indicates a size of 0.70×10^{-13} cm.

Fig. 6. This figure shows the experimental points at 236 MeV 1 the attempts to fit the shape of the experimental curve. The 1 fit lies near 0.78×10^{-13} cm.

Angular Distributions

- In addition to total x-section, can look at angular dependence
 - For elastic scattering, the angle uniquely determines the energy of the outgoing electron
 - So angle is the only independent variable
- Can write down the most general form of the cross section

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \cos^2(\frac{1}{2}\theta)}{4E^2 \sin^4(\frac{1}{2}\theta)} \frac{E'}{E} \left[W_2(Q^2) + 2W_1(Q^2) \tan^2(\frac{1}{2}\theta) \right]$$

- These W are called the proton form factors
- Understanding these two form factors tells us about the structure of the proton!

Inelastic Scattering

- Once the proton breaks up, the energy of the outgoing electron is not determined just from the angle of the scattering
- We have an additional degree of freedom: the invariant mass of the hadronic system
- In lab frame: proton 4-momentum is P = (M, 0)
- ullet In any frame, four-momentum transfer is $k=k^\prime+q$ and the four-momentum of the final hadronic system is W=p+q
- Invariants of the problem:

$$Q^{2} = -q^{2} = -(k - k')^{2} = 2EE'(1 - \cos \theta)$$

$$P \cdot q = P \cdot (k - k') = M(E - E')$$

where the last expression in each row is evaluated in the lab frame.

• Define $v \equiv E - E'$ so $P \cdot q = mv$ and

$$W^2 = (P+q)^2 = (P-Q)^2 = M^2 + 2P \cdot q - Q^2$$

= $M^2 + 2Mv - Q^2$

where $Q^2 = -q^2$

- Elastic scattering corresponds to $W^2=P^2=M^2$ so for elastic scattering $Q^2=2M{
 m V}$
- For inelastic scattering, we can define 2 indep dimensionless parameters

$$x \equiv Q^2/2Mv$$

 $y \equiv \frac{P \cdot q}{P \cdot k} = 1 - E'/E$

Structure Functions

• We can express the x-section for DIS

$$\frac{d\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2} \frac{\cos^2(\frac{1}{2}\theta)}{\sin^4(\frac{1}{2}\theta)} \left[W_2(q^2, W) + 2W_1(q^2, W) \tan^2(\frac{1}{2}\theta) \right]$$

- These are the same two terms as for the elastic scattering, except that the W now depend on both q^2 and W.
- W_1 and W_2 care called the *structure functions*
- A SLAC-MIT group measured $d\sigma/dq^2dv$ at 2 angles: 6° and 10° (see next page for the plots)
 - Surprise: Above the resonance region, σ did <u>not</u> fall with Q^2 !
 - Like Rutheford scattering, this is evidence for hard structure within the proton
 - To deternine W_1 and W_2 separately, would need to measure at 2 values of E' and of θ that give the same q^2 and v
 - The first exp couldn't do this: small angle where experiment ran, $\it W_{\rm 2}$ dominates so study that
 - Most important result: W_2 depends only on the dimensionless combination $x=Q^2/2M\nu$ (or $\omega=2M\nu/Q^2$) "scaling"

See the next 2 pages for the experimental results

(

FIG. 2. Three representative radiatively corrected spectra at (a) $\theta = 6^{\circ}$, E = 7 GeV; (b) $\theta = 6^{\circ}$, E = 16 GeV, and (c) $\theta = 10^{\circ}$, E = 17.7 GeV. The ranges of q^2 covered are (a) $0.2 \le q^2 \le 0.5$ (GeV/c)²; (b) $0.7 \le q^2 \le 2.6$ (GeV/c)²; and (c) $1.6 \le q^2 \le 7.3$ (GeV/c)². The elastic peaks are not shown.

SLAC-MIT Results: Scaling

pendence, that is, exact "scaling." (After Friedman and Kendall (1972).)

Evidence for scaling:

F2(x) depends on x but not g?

Thurd" pointlike partons inside

nucleon

What does Scaling Tell Us?

- Supposed there are pointlike partons inside the nucleon
- Let's work in an "infinite momentum" frame so we can ignore all mass effects
- ullet In the infinite momentum frame, the roton 4-momentum: P=(P,0,0,P)
- Visualize a stream of parallel partons each with 4-momentum xP where 0 < x < 1; neglect transverse motions of the partons
 - -x is the fraction of the proton's momentum that the parton carries
- Suppose our electron elastically scatters from a parton

$$(xP+q)^2 = -m^2 \sim 0$$

$$x^2P^2 + 2xP \cdot q + q^2 = 0$$

Since $P^2 = M^2$, if $x^2M^2 \ll q^2$ then

$$2xP \cdot q = -q^2 = Q^2$$
$$x = \frac{Q^2}{2P \cdot q} = \frac{q^2}{2M\nu}$$

This x is the same x we defined before

Scaling of the Structure Functions is evidence for the presence of pointlike partons with the proton!

Some comments:

- We are using an impulse approximation where the scattering occurs before the partons have a chance to redistribute themselves
- We implicitly assume that after the scattering, the partons that participate in the scattering turn into hadrons with probability=1
- This is a lowest order calculation. We will see later that to higher order in perturbatin theory, QCD corrections will introduce slow scaling violations.

Some Facts About Parton Distribution Functions

• Let f(x) be the prob of finding a parton with mom fraction between x and x+dx in the proton. Then because the partons together carry all the momentum of the proton

$$\int dx \, x f(x) = \int dx \, x \sum_{i} f_{i}(x) = 1$$

where \sum_i is a sum over all partons in the proton

- We call f(x) the parton distribution function since it tells us the momentum distribution of the parton within the proton
- It's natural to associate the partons with quarks, but that's not the whole story
 - Because ep scattering occurs through the electromagnetic interaction, it only occurs via scattering with charged partons. If the proton also contains neutral partons, the EM scattering won't "see" them
 - Let's assume that the ep scattering occurs through the scattering of the e off a quark or antiquark
 - * We saw that the SU(3) description of the proton consists of 2 u and 1 d quark.
 - * However we can in addition have any number of $q\overline{q}$ pairs without changing the proton's quantum numbers
 - * The 3 quarks (*uud*) are called *valence quarks*. The additional $q\overline{q}$ pairs are called *sea* or *ocean* quarks.